Reducing the manufacturing cost of carbon fibers

O A A T A C C O M P L I S H M E N T S

Microwave Production of Carbon Fibers

Challenge

Carbon fibers can reduce the weight of automotive parts by over 60%, while retaining comparable mechanical properties to heavier materials. Since capital costs represent a substantial portion of the total cost of carbon fiber production, a low-cost manufacturing process could significantly reduce the expense of carbon fibers.

Technology Description

Carbon fibers were manufactured from a polyacrylonitrile-(PAN) based precursor, the typical feedstock for conventional carbon fiber manufacturing processes. Aspects of a continuous microwave process were developed at a laboratory-scale level. A stable, atmospheric, open plasma was used to convey the microwave power to the target feedstock. The direct microwave heating unit uses a long cavity, designed as a modular structure, to accommodate additional lengths and plasma treatments in the further development of a continuous process. Other peripheral equipment, such as a fiber preheater, was developed to support the microwave process.

Accomplishments

This project demonstrated the technical feasibility of using microwave-assisted plasma technology to produce carbon fibers from PAN precursors. The project built a laboratory-scale, continuous carbon fiber processing unit. Microwave processing times of 5-8 minutes compare favorably with conventional processing times of 40-90 minutes.

Plasma/microwave production of carbon fibers reduces manufacturing cost up to 27% and processing time up to 30 times (shown is plasma processing system).

To control the quality of the carbon fibers produced, an in-situ, real-time diagnostic monitoring system was developed. This high-temperature (up to 650° C) dielectric measurement system is able to measure critical properties of the carbon fibers under actual processing conditions. The microwave technology produces carbon fibers with properties – density, electrical resistivity, fiber diameter, effective tow area – comparable to those made by conventional processes.

Data obtained from the measurement system were used to develop a computer simulation model that characterizes the microwave direct heating of carbon fibers at various stages of the manufacturing process. Modeling allows further testing and refinement of the continuous manufacturing process.

Contacts

Joseph Carpenter
Manager, Automotive
Lightweighting Materials
Program
202-586-1022
202-586-6109 fax
joseph.carpenter@ee.doe.gov

Richard Ziegler
Oak Ridge National
Laboratory
865-574-5149
865-576-1583 fax
zieglerre@ornl.gov

Benefits

- Lightweight carbon fibers have sufficient mechanical integrity to replace heavier materials in critical automotive parts. Lighter weight improves vehicle fuel economy.
- The microwave technology can replace 40-50% of a conventional processing line, which accounts for 25-40% of the total processing costs (capital and operating). This process alone could yield a 20% reduction in carbon fiber price.

Future Activities

- Further refine the continuous carbon fiber processing unit to prepare for commercialization.
- Develop more sophisticated computer modeling to more precisely control the quality of the carbon fibers produced.
- Further develop supporting systems for the microwave process.
- Produce sufficient quantities of carbon fiber for mechanical testing.

Partners in Success

- Akzo Fibers
- Hexcel Fibers
- Oak Ridge National Laboratory
- USCAR's Automotive Composites Consortium (Ford Motor Company, General Motors Corporation, DaimlerChrysler Corporation)

